
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

62

Parallel Processes: Non Deterministic Input

4	� Parallel Processes: Non
Deterministic Input

The concept of the non-determinism is defined

•	 the behaviour of an alternative is described together with the ALT helper class
•	 a simple example is used, based on processes from the previous chapter
•	 the concepts of guards and guarded commands are explained
•	 processes that enable window based user input and output are used

In many systems there is a requirement to provide feedback from a downstream stage of the process to an
upstream one. The upstream process has no idea when such a piece of feedback information is going to
arrive and thus has to be able to accept it at any time. The behaviour of such a process is said to be non-
deterministic because the arrival of the information cannot be determined when the process is defined.
We know that such feedback can arrive but not when. Similarly, a process network may be subject to
external interventions that change the operation of the system. It is known that these interventions will
occur but not when.

For this purpose Alternative provides the program structuring mechanism. In its simplest form the
Alternative manages a number of input channels. On executing an Alternative the state of all the input
channels is determined.

If none of the channels are ready the Alternative waits until one is ready, reads the input and then obeys
the code body associated with that input.

If one input is ready then that channel is read and its associated code is obeyed.

If more than one channel is ready then one is chosen according to some selection criterion and the
channel is read and its associated code body obeyed. Typically, an Alternative is incorporated into a
looping structure so that the input channels can be repeatedly accessed.

As a first example we shall take the process that generates a sequence of integers, GNumbers, previously
described in Section 3.4. We shall modify it to accept an input which resets the sequence to a number
input by the user at any time chosen by the user.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

63

Parallel Processes: Non Deterministic Input

4.1	 Reset Numbers

The structure of the revised numbers process is shown in Figure 4-1.

Figure 4-1 The Reset Numbers Process Structure

This however does not indicate the changes required to the internal operation of the ResetNumbers
process, which is shown in Figure 4-2.

Figure 4-2 Internal Structure of ResetNumbers Process

Instead of using the GPrefix process of GNumbers (see Figure 3-4) we use a new process ResetPrefix.
Figure 4-2 exposes the fact that the ResetPrefix process contains two input channels over which it
can alternate. The coding of the ResetPrefix process is shown in Listing 4-1.

10	class ResetPrefix implements CSProcess {
11	
12	 def int prefixValue = 0
13	 def ChannelOutput outChannel
14	 def ChannelInput inChannel
15	 def ChannelInput resetChannel
16	
17	 void run () {
18	 def guards = [resetChannel, inChannel]
19	 def alt = new ALT (guards)
20	 outChannel.write(prefixValue)
21	 while (true) {
22	 def index = alt.priSelect()
23	 if (index == 0) { // resetChannel input
24	 def resetValue = resetChannel.read()
25	 inChannel.read()
26	 outChannel.write(resetValue)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

64

Parallel Processes: Non Deterministic Input

27	 }
28	 else { //inChannel input
29	 outChannel.write(inChannel.read())
30	 }
31	 }
32	 }
33	}

Listing 4-1 ResetPrefix Coding

The properties of the process comprise {12–15}; the initial prefixValue from which the first sequence
will start. The channels it uses to communicate, namely, inChannel, outChannel and resetChannel.
The latter receives the value to which the sequence of integers is to be reset.

An alternative comprises a number of guards and associated guarded commands. The construction of
an alternative is assisted by the ALT helper class. In this case a guard is simply an input channel and the
guarded command is the code body that is associated with that channel input. There are two guards{18},
formed as a List; the resetChannel and inChannel. The latter is used during the normal operation
of the process network. The order in which these guards are specified is important because we wish to
give priority to the resetChannel. The alternative alt is defined {19} by means of the ALT helper
class, which takes a List of guards.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

65

Parallel Processes: Non Deterministic Input

The fundamental operation of the process remains the same as GPrefix, in that the value of prefixValue
is output {20} after which the process repeatedly {21–31} inputs a value and then outputs the same value
on its outChannel. In this case the input comes from either the resetChannel or the inChannel.
The method priSelect() applied to alt {22} returns the index of the channel that was selected from
the alternative using the criterion that the channel selected has the lowest List index if more than one
guard is ready. Thus an index value of 0 implies that the resetChannel is ready to be read from and 1
implies that resetChannel was not ready and inChannel was ready. Hence we can construct a simple
if statement {23-30} to discriminate these cases for each of the guards. In more complex alternatives,
with more guards, we would use a switch statement. The first operation of any guarded command
sequence must be to read from the channel that was selected by the alternative.

The guarded command for the resetChannel reads from the channel {24} and assigns its value to
resetValue. The value currently circulating round the network needs to be read from inChannel {25}
and ignored after which resetValue can be written to the outChannel {26}. The guarded command
for input from inChannel is identical to the original version of GPrefix in that a value is read from
inChannel into inputValue {29} and then written to the outChannel {29}.

Listing 4-2 shows the coding of the ResetNumbers process, which can be seen to be a direct
implementation of Figure 4-2.

10	class ResetNumbers implements CSProcess {
11	
12	 def ChannelOutput outChannel
13	 def ChannelInput resetChannel
14	 def int initialValue = 0
15	
16	 void run() {
17	
18	 def a = Channel.one2one ()
19	 def b = Channel.one2one()
20	 def c = Channel.one2one()
21	
22	 def testList = [new ResetPrefix (prefixValue: initialValue,
23								 outChannel: a.out(),
24								 inChannel: c.in(),
25								 resetChannel: resetChannel),
26					 new GPCopy (inChannel: a.in(),
27							 outChannel0: outChannel,
28							 outChannel1: b.out()),
29					 new GSuccessor (inChannel: b.in(),
30								 outChannel: c.out())
31]
32	 new PAR (testList).run()
33	 }
34	}

Listing 4-2 Definition of The ResetNumbers Process

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

66

Parallel Processes: Non Deterministic Input

4.2	 Exercising ResetNumbers

In order to exercise ResetNumbers a process is required that can send values to its resetChannel.
This is most simply achieved by running two processes in parallel, each with their own user interface
so the interaction between the processes can be observed. The structure of this process network is
shown in Figure 4-3. The user interface is implemented using a GConsole process, see accompanying
documentation.

Figure 4-3 Exercising the ResetNumbers Process

The ResetUser process receives inputs from its GConsole user interface process through a
GConsoleStringToInteger process, which coverts an input string typed into the input area of the
user interface into an Integer. The channel RU2GC is used to output messages to the user interface’s
output area. The channel RU2GCClear is used to clear the user interface’s input area between inputs. On
receiving an input, the ResetUser process outputs this value to the ResetNumbers process using the
channel RU2RN. This value is input on the ResetNumber’s resetChannel (see Figure 4-2 and Listing
4-2), which is then communicated to the resetChannel of the resetPrefix process (see Listing 4-1
{15, 24}) contained within the ResetNumbers process.

The process ResetNumbers outputs a sequence of numbers, the content of which changes as reset
values are read, to its RN2Conv channel. The process GConsoleObjectToString process converts any
object to a String using the object’s toString() method. The String representation of the values
passes through a process called GFixedDelay which introduces a delay into the output stream sent to
the GConsole process so that it is easier to read from the user interface’s output area.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

67

Parallel Processes: Non Deterministic Input

Listing 4-3 presents the coding of the ResetUser process. An initial message is written to the user
interface {18} after which values are repeatedly {19–23} read from the GConsoleStringToInteger
process as an Integer value v {20}, after which the input area of the user interface is cleared {21}. The
value to be sent to the reset channel is then written to the channel resetValue {22}.

10	class ResetUser implements CSProcess {
11		
12	 def ChannelOutput resetValue
13	 def ChannelOutput toConsole
14	 def ChannelInput fromConverter
15	 def ChannelOutput toClearOutput
16		
17	 void run() {
18		 toConsole.write("Please input reset values\n")
19		 while (true) {
20		 def v = fromConverter.read()
21		 toClearOutput.write("\n")
22		 resetValue.write(v)
23		 }
24	 }
25	}

Listing 4-3 The ResetUser Process

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

68

Parallel Processes: Non Deterministic Input

Listing 4-4 shows the implementation of the process network shown in Figure 4-3.

10	def RU2RN = Channel.one2one()
11
12	def RN2Conv = Channel.one2one()
13	def Conv2FD = Channel.one2one()
14	def FD2GC = Channel.one2one()
15
16	def RNprocList = [new ResetNumbers (resetChannel: RU2RN.in(),
17					 			 initialValue: 1000,
18					 			 outChannel: RN2Conv.out()),
19			 	 new GObjectToConsoleString (inChannel: RN2Conv.in(),
20				 					 �outChannel:Conv2FD.out()),
21			 	 new GFixedDelay (delay: 200,
22				 			 inChannel: Conv2FD.in(),
23				 			 outChannel: FD2GC.out()),
24			 	 new GConsole (toConsole: FD2GC.in(),
25					 		 frameLabel: "Reset Numbers Console")
26]	
27
28	def RU2GC = Channel.one2one()
29	def GC2Conv = Channel.one2one()
30	def Conv2RU = Channel.one2one()
31	def RU2GCClear= Channel.one2one()
32
33	def RUprocList = [new ResetUser (resetValue: RU2RN.out(),
34							 toConsole: RU2GC.out(),
35							 fromConverter: Conv2RU.in(),
36							 toClearOutput: RU2GCClear.out()),
37					� new GConsoleStringToInteger (inChannel: GC2Conv.in(),
38					 		 outChannel: Conv2RU.out()),
39					 new GConsole (toConsole: RU2GC.in(),
40					 		 fromConsole: GC2Conv.out(),
41					 		 clearInputArea: RU2GCClear.in(),
42					 		 frameLabel: "Reset Value Generator")
43]
44	new PAR (RNprocList + RUprocList).run()

Listing 4-4 The Script That Exercises the ResetNumbers Process

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

69

Parallel Processes: Non Deterministic Input

Initially, the channel RU2RN is defined {10}. After which the two parts of the network are defined separately.
First, the ResetNumbers network is defined {12–26}. The channels RN2Conv, Conv2FD and FD2GC
are defined {12–14}. The list RNprocList contains instances of each of the processes shown in Figure
4-3 used to implement the ResetNumbers process and its interface components. By inspection, it can
be seen the connections shown in Figure 4-3 are implemented by the properties passed to each of the
processes in the list {16–26}. The processes GObjectToConsoleString, GFixedDelay and GConsole
are described in more detail in the accompanying documentation. The timing of the stream of output
numbers is governed by the delay property of the GFixedDelay process {21–23}.

The second part of Listing 4-4 {28–43} shows the network used to implement the RUprocList that
implement the ResetUser part of the system and its interface components. The channels RU2GC,
GC2Conv, Conv2RU and RU2GCClear implement the channels shown in Figure 4-3 {28–31}. Finally,
the two process lists RNprocList and RUprocList are concatenated using the overloaded + operator
{44} and the network is executed. Each of the parts of the network has their own GConsole process.
The frameLabel property of this process is used to write a title on each of the user interface windows
{25, 42} respectively.

When the processes are invoked it can be observed that as reset values are typed into the Reset Value
Generator console, the values in the Reset Numbers Console continue for a short time with the
original sequence and then produce a sequence starting with the recently typed reset value.

4.3	 Summary

This chapter has introduced the concept of the alternative and shown how it can be used to choose
amongst a number of input channels. In the next chapter we shall show how the guards can be extended
to include timer alarms in a more realistic example derived from machine tool control.

4.4	 Exercises

Exercise 4-1

What happens if line {25} of ResetPrefix Listing 4-1 is commented out? Why?

Explore what happens if you try to send several reset values hence, explain what happens and
provide a reason for this.

Exercise 4-2

Construct a different formulation of ResetNumbers that connects the reset channel to the
GSuccessor process instead of GPrefix. You will have to write a ResetSuccssor process.
Does it overcome the problem identified in Exercise 1? If not, why not?

http://bookboon.com/

